
diffusivity coefficient of the i-th layer, cm2/sec; Ti, temperature of the i-th layer, ~ 
To, thermostat temperature, ~ Tf, paraffin premelting temperature, ~ li, thickness of 
the i-th layer, ~m; l, thickness of the whole film,_~m; $, a dimensionless coordinate; T, 
dimensionless time; ui, dimensionless temperature; Q, dimensionless heat flux; Qlim, limit 
heating pulse intensity for which the system emerges into the stationary temperature regime, 
W/cm2; K, heat-conduction coefficient of the total paraffin and Lavsan layer, W/cm2; ~, 
thermal diffusivity coefficient of the total paraffin and Lavsan layer, cm2/sec; l, total 
thickness of the layers of paraffin and the substrate, cm. Subscripts i = 1 corresponds 
to the first layer [0, xl]; i = 2 to the second layer [xl, x2]; i = 3 to the third layer 
[x2, x~]; p, for particles; and m for the paraffin medium. 
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HEAT FORMATION IN A VISCOELASTIC RECTANGULAR PRISM UNDER 

FORCED HARMONIC OSCILLATIONS 

B. P. Gumenyuk UDC 539.376:536.2.02 

The heat formation in a viscoelastic harmonically excited prism that occurs be- 
cause of mechanical energy dissipation is investigated. 

The extensive application of viscoelastic materials in modern engineering arouses con- 
siderable interest in the investigation of the thermomechanical behavior of viscoelastic 
bodies. These materials possess low heat conductivity, a capacity to dissipate mechanical 
energy, and a temperature dependence of the physicomechanical and strength characteristics. 
Interaction of the strain and temperature fields is manifested most clearly under continued 
harmonic deformation. A substantial rise in temperature of the oscillating body is possible 
here, which occurs because of mechanical energy dissipation. According to some experimental 
results [1-3], even in the quasistatic frequency domain the heating can influence the longev- 
ity of structural elements decisively under definite conditions. In the dynamic frequency 
range, the level of heat formation rises significantly in the neighborhood of resonances, and 
it acquires a still more important role [4, 5]. 

On the basis of the exact solution of the plane dynamic problem of viscoelasticity ob- 
tained in [6], heat formation in a viscoelastic prism subjected to harmonic excitation is 
investigated in this paper. The complex viscoelastic shear modulus is considered frequency- 
dependent and temperature-independent. An infinitely long prism of rectangular section 
I~I ~ L, In! ~ H is considered, which performs forced harmonic tension-compression oscilla- 
tions under the action of a normal load applied to two opposite faces n = • Harmonic dis- 
placements with amplitude Uo = I~o are given on these faces in solving the dynamics problem 
[6]. Convective heat transfer is realized between the prism faces and the environment of 
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temperature To that agrees with the initial temperature of the prism. The dissipative func- 
tion is taken equal to the mechanical power averaged over the oscillation cycle 

D = - -  Re ~h Re dt', 
2n . )  Ot" 

l 

where  ~ jk  = ~ j k  (~ '  ~ )exp  i ~ t ' ,  e j k  = e j k ( ~ ,  n ) e x p  i ~ t ' .  

The slow temperature rise in time permits neglecting the influence of the rapidly damped 

mechanical transient and introducing the temperature T ~-- [ T( l ' )d t '  averaged over the 
2n 3 

oscillation cycle. The temperature field of prism heating is described by the heat-conduc- 
tion equation averaged "over the oscillation cycle 

I OT OZT 6~T D 
a Ot ----6~ z +-0~ z .... +---(--L<~<L,~ --H<~I<H, t>O) (I) 

with the initial and boundary conditions 

T] t=o == To, 

OT 
-I- ~x ( T - -  To) = O 

OT ~ ai_ ( T - - T o ) :  0 

t~ = _+L), 
(2) 

Ol = _+H). 

To construct the dissipative function D it is necessary to know the stress--strain state 
of the prism which is determined because of solving the dynamic problem of viscoelasticity 
[6] 

1 90j2L 2 
" J ' ~ +  1--2-----~ y ~ ' ~ +  ~ u ~ - -  0 (i, k =  x, y), (3) 

Ux = O, t t  u = -+-ao  ( g  = " + g o ) ,  

a ~ = O ,  a ~ u = O  (x=-+ - l ) ,  (4)  

whe re  ux = u 6 / L  = ux~ + i u x i ,  Uy = u n / L  = Uy~ + i u y i ,  U(x,  y ,  t )  = Ux(X , y ) e x p  i ~ t ,  V(x ,  y ,  
t) = Uy(X, y)exp i~t, x = ~/L, y = ~/L, G = G~(~) + iGi(w), yo = H/L. 

To solve the boundary-value problem (3)-(4), an approach is used that extends the known 
method of superposition [7] to the case of linear viscoelasticity. The technique for con- 
structing the solution is elucidated in [6]. Consequently, the displacement and stress fields 
are determined. 

After having determined the dissipative function D, taking symmetry conditions into 
account the boundary-value problem (I), (2) takes the following form in dimensionless co- 
ordinates 

0r 0"~ 

c3x Ox z 
- - 4  - -  02q~ + F  ( 0 < x < ~ , .  0 < y < y o ,  r > 0 ) ,  (5)  

@z 

q~ 1~=,, = 0, 

01~ I = O, 0q___~.' _~ BI~. ~ 0, x = l ,  
Ox ~=o Ox (6) 

@1 =0,  0__~ + B ~ = 0 ,  g=9o,  
Oy }~ko Og 

where 

D == 

q: T -  To at L z 
o ; T =  T - z = T o - - T r ;  F =  ~ - D ;  

a5 T2 L z ' a~ ~T~ 

~ ~ s 2 2 siu~ ) -  2~ (s~tsut + s~isui) + 2 (s~u ~ + xu~)], 6 ~ ( 1 + 6  2 ) [(1--~)(s~t+ x2+sv1+  _ s~ " 
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z ~ t!/l ! 

, , l i l  i / l l  

: i  - & -  ~ - - ! 4 ~  
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i , = j  , 
0 4 8 fz 

Fig. i 
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! 
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Fig. 2 

Fig. i. Dependence of the dimensionless temperature on 
the dimensionless frequency for x = 0, y = 0, r = I. 

Fig. 2. Temperature change with time for x = 0, y = 0. 

s~ = o~/2Ooao = S~l + is~2; s v = ay/2Ooao = sul + is:;  

s.w = a~:J2Goao =- Sx.a + is.~u2; B1, 2 : cz,, ~L /~; 6 = G2/G1; 

~ = v c o s y y _ 2  ( _ I ) ~ X ~ [  (k~-!--p~) chplx  
2GBo n=l 4plkn sh p----~ - -  

- - p , k ,  c h p , x  cosk ,~y+yo ( _ l ) i y :  ~,~+ Wo / oh%y" ~ cos~:x; 
sh p~ i=i 2 ] ch qlYo ch q~Yo 

- "  + wo)(g+p ) chp: 
2GBo | " -- 

n=l 4plk~ sh Pl 

oo T ~ \ o~,: ~,p ,,, k~ -- p~ ( sh plx sh p-,x 
�9 -- ( - - t j X ~ : ) s i n k ~ g +  

2GBo ~ 2 ~, sl~ p~ sh p~, 
n = :  I " " " 

-}- b'0 ~ '  (--1)iYji~: [ sh q~g q~ + ~] sh q2g '~ sin;~:x; I q~ . . . .  
::=1 ~ ch qlgo 2q2 ch q2Yo J 

"~o .... V~/( 1 - - " ) ;  ~'~ =: 0 ~L~'/G; ~'~ =:: '~l (1 - -2v) /2  (1 - - ' J ;  Pf =: k ~ - - : ;  

pl = k -~ -v~ ;  q~ = ~ - : %  q~ = - . : ~ ~ 7~; k , , = ( 2 n - - 1 ) ~ / 2 y . ;  ~ q = / a ;  

the quantities Bo, Xn, Yj (n, j = i, 2 .... ) are determined as a result of solving the in- 
finite system of complex linear algebraic equations presented in [6]. 

Finite differences using an explicit scheme for equations of parabolic type [8] are ap- 
plies to solve the boundary-value problem (5), (6). To this end, the time spacing At is 
introduced such that T k = khT (k = 0, i, 2, ...). The interval 0 ~ x ~ 1 is partitioned into 
N sections of length Ax by the points xi = iAx (i = O, i, ..., N), while the interval 0-- y--~ 
yo is partitioned into M sections of length Ay by the points yj = jAy (j = 0, 1 ..... M). 
Replacement of the derivatives by the appropriate differences results in a difference scheme 
in ~k+li,j with a second-order approximation in the coordinates and a first-order approxima- 
tion in the time 

t h 
~ i , ]  - - l ~ i , ]  _ _  , i + 1 ,  / ' - -  i - - l ,  ] -Jr " " "@ *, / 

A'~ Ax" A y ~ 

( i = 1 ,  2 . . . . .  N - - l ;  ] = 1 ,  2 . . . . .  M - - l ) ,  

, k+ '  _J_l (4,t,~+, _ , ~ + / , ) ,  ,,~+, = (4q~L' ' - - , ~ + '  i)/(2B;Ax + 3), (7) 0, i ---~ 3 , " r l . ]  . -I-N, ] . ]  N--2 ,  

~b~,+~ __[_t t4,#'+~ - -  ~,,~+a~ ~-l-~ (4~1;~+ ~ - -  q~+2~_~)/(2B~Ag + 3), 
i ,o = 3 ~ v i ,  l ~ ' i , 2 : ,  i , M  , - i , M - - ,  
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I , ' ~ q  
o ~ ~ j a ~ qa x 

Fig. 3. Temperature distribution along the coordin- 
ates for the first four resonances: a) for x = 0; b) 
for y = 0. 

@[ i =0, 
k 

where @i,j = @(xi' Yj' ~k); F~,j = F(xi, yj, Tk). 

The relationship between Ax, Ay, and Az is selected from the stability condition for the 

difference scheme (7) 

1 ( I I \ - ~  

Numerical results were obtained for a prism form IRP-1347 rubber [3] for the following 
data: GI = ar ~b exp(--2.3b~), 8 = cu d exp(--2.3dq), ~ = 8.86T2/(I01.6 + T2), a r = 1.35 MPa, 
b = 0.04, c = 0.06, d = 0.18, . = 0.5, Go = 1.18 b~a, p = 1200 kg/m 3, To = 20~ T r = --20~ 

= 0.22 W/m.deg, c E = 1.86.106 J/m3-deg, BI = 4, B2 = 524, L = 0.I m, yo = I. 

Curves of @(~) are constructed in Fig. 1 for the central point of the prism cross sec- 
tion (~ = mL(p/Go)I/=, t = 84,700 sec). The solid line corresponds to the general case of a 
frequency-dependent shear modulus G while the dashes correspond to the case when G is inde- 
pendent of the frequency and is calculated for ~ = 1 (~ = 313,6 sec-~), here Gx = 1.35 MPa 
and 6 = 0.06. As is seen from the results obtained, neglecting the dependence of the material 
properties on the frequency results in substantial error in the temperature determination, 
especially at high frequencies. The graphs also illustrate the influence of the dynamic 
behavior on the heating level of the prism. As should have been expected, the heating in- 
tensity at the resonances (local maximums) is considerably higher than in the areas lying 
nearby. Even for small loading amplitudes, the absolute increment in the temperature reaches 
a significant value. For instance, for the frequency g = 0.i (m = 31.36 sec -~) @ = 1920, 
which corresponds to the value T -- To = 7.68~ for Uo = 1 mm (here ao = 0.01, and the defor- 
mation is 1%). At higher frequencies, the heating is considerably more intense even for a 
very much smaller loading amplitudes. Thus, for example, for the frequency ~ = 4.8 (first 
resonance) ~ = 8705.103 and T -- To = 348~ for Uo = 0.I mm (ao = 0.001, the deformation is 
0.1%). Such heating can decisively influence the functional capability of a structural ele- 
ment, in this case a prism. 

Curves of ~(T) at the center of the prism cross section are shown in Fig. 2 for the 
first four resonance frequencies. Curves I, 2, 3, 4 correspond to the frequency values ~ = 
4.8 (~i = 1505 sec-1), ~2 = 6.6 (m2 = 2070 sec-~), ~3 = 8.3 (~ = 2603 sec-1), ~ = 11.7 
(~ = 3669 sec-~). As is seen from the figure, at the time T = i the temperature field in 
the prism is already practically stationary. Therefore, results for the steady-state temper- 
ature are presented in Fig. i. This same remark also refers to the results to be discussed 
below. 

Curves of the dimensionless temperature dependence on the coordinate y are shown in Fig. 
3a for the mentioned resonance frequencies for x = 0 at the time T = 1. The maximum of the 
curves ~(y) is observed for y = 0 (at the central point), which is in agreement with the 
quasistatic representations in [3]. Analogous resonance distributions of the temperature 
along the coordinate x for y = 0 are shown in Fig. 3b. Here the maximum of the dependence 
~(x) arrives at the point x = 0 at the first resonance (curve i), however, for higher reson- 
ances (curves 2-4), the maximum point shifts from the center to the circumference. This is 
explained by the presence of side motion modes and a substantial nonuniformity in the stress 
distribution along the coordinate x for resonances higher than the first. 

996 



• /0-6,- 
#0 ,I 

f 

# 

F i g .  4 .  Dependence o f  t h e  temperature on  
t h e  f r e q u e n c y  f o r  x = 0 ,  y = 0 ,  T = 1 f o r  

different viscosity levels. 

To estimate the influence of viscosity on the heat formation in a prism, the dependence 
of the temperature on the frequency was investigated at the point x = 0, y = 0, for T = i for 
different values of ~. The results are shown in Fig. 4, where ~ = 0.02 corresponds to the 
solid line, 6 = 0.i to the dashes, and ~ = i to the dash-dot line. To eliminate the influence 
of :the frequency dependence of the shear modulus on the results being obtained, it was assumed 
that GI(~) = GI(1) = 1.35 MPa. 

Therefore, the results represented are qUalitative in nature. It is seen from the figure 
that as the viscosity increases, the resonance values of the temperature diminish, certain 
resonance vanish, and finally, the curve of the dependence of the temperature on the fre- 
quency becomes completely smooth. 

NOTATION 

U, V, complex displacement; u~, un, complex displacement amplitudes; oij, Eij, complex 
stress and strain amplitudes; $, n, Cartesian rectangular coordinates; x, y, dimensionless 
coordinates; t, T, physical and dimensionless times; L, H, width and height of the prism 
cross section; uo, a given displacement amplitude; T, To, average temperature over a cycle 
and the initial temperature; D, dissipative function; %, a, ~i,=, heat conduction, thermal 
diffusivity, and heat elimination coefficients; cc, volume specific heat; m, ~, circular and 
dimensionless frequencies; ~, dimensionless temperature; P, density of the material; ~, Pois- 
son ratio; G = GI + iG~, complex shear modulus; Go, static shear modulus of the material; 
and ar, b, c, d, Tr, material constants. 
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